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Abstract—This paper presents the implementation of a newly
developed approximation method for the design of Lattice Wave
Digital Filters (LWDF) with very low group delay variations.
These filters are a particular kind of Infinite Impulse Response
(IIR) filters which exhibit excellent hardware implementation
characteristics, since they are based on allpass filters with
prescribed phase function. Allpass filters are particularly suited
for hardware implementation, since the required multiplications
are very low. The linear phase design method aims at minimizing
the inherent group delay variations of IIR filters using modern
approximation techniques from applied linear algebra. The inte-
gration into a dedicated LWDF design toolbox allows a broader
audience to make use of this design method. The results show
the effectiveness of this design method compared to a reference
Butterworth implementation. Through the integration into the
filter design toolbox it is possible to analyze quantization effects
as well as to directly retrieve the filter coefficients needed for
hardware implementation.

Index Terms—design method, linear phase filters, allpass
filters, Lattice Wave Digital Filter, LWDF, Galerkin method,
Collocation method, ultra-low group delay, low multiplier count

I. INTRODUCTION

The Lattice Wave Digital Filter is an implementation variant
of the infinite impulse response filter. This type of filter
generally requires less implementation effort for a given
specification than a finite impulse response filter. The LWDF is
a particularly favourable type due to its minimised number of
multipliers and insensitivity to the effects of parameter quanti-
sation. However, infinite impulse response filters induce a non-
constant group delay to the processed signal, i.e. dispersion.
Dispersion is a critical phenomenon in a variety of applications
which rely on the shape of the signal envelope. The Lattice
Wave Digital Filter however can be designed in a way to
minimise the group delay variation. Applying a novel design
method as proposed in [1], yields LWDFs with approximately
constant group delay. Until now this design method has been
proven effective in theory but has not yet come to practical use
due to the lack of availability in commonly used filter design
applications.

The intention of this work is to make this design method
conveniently accessible for practical use by implementing
the algorithms into a publicly available filter design toolbox
[2]. Furthermore the effects of hardware implementation of
LWDFs are investigated.

Like all IIR filter types LWDFs can be described using the
general transfer function for a degree of N

H(z) =
Y (z)

X(z)
=

∑N
m=0 bm z

−m∑N
n=0 an z

−n
, (1)

where a and b are real coefficients. Lattice Wave Digital filters
however are implemented using a distinct structure with two
allpass filters S1(z) and S2(z) which are referred to in the
literature [3] as reflection and reference filter respectively.

H(z) =
1

2
(S1(z) + S2(z)) (2)

To achieve low parameter sensitivity these allpass filters are
implemented in a cascaded structure of partial allpass filters
of 1st and 2nd order, which are referred to as adaptors.

S(i)(z) =
ci1 + z−1

1 + ci1 z−1

S(i)(z) =
ci2 + ci1 z

−1 + z−2

1 + ci1 z−1 + ci2 z−2
(3)

where the index i represents the i-th. structure of the cascade.
The transfer function of the allpass filters in cascade reads

S1,2(z) =

M∏
i=1

S(i)(z) (4)

As can be deducted from (3), the numerator and denominator
coefficients occur in pairs and reversed order. Employing an
elaborate hardware implementation structure for the adaptors,
the number of multipliers can be reduced approximately by a
factor of two compared to the direct form implementation of
(1).

The LWDF design approach generally relies on the phase
relation between the two allpass filters S1(z), S2(z). Ideally
the phase relation is 0◦ in the passband and 180◦ in the stop-
band region, thus achieving a desired filter characteristic. Gazsi
[4] proofed that Butterworth, Cauer (elliptic) and Chebychev
filters of type I and II can be realized as LWDFs. LWDFs
with nearly linear phase have been reported by Kunold [5]
and Johansson et al [6]. In these papers one allpass filter
(i.e. S2(z)) is essentially a delay element with constant group
delay τg = bN2 c, and requires therefore no multiplication but
bN2 c delay stages (see Figure 1). The reflection filter S1(z)
is designed in such a way that it approximates the phase
requirements of 0◦ or 180◦ relative to the phase of S2(z).
The advantage of the method is that the delay element can



be realized without multipliers, the disadvantage however is a
higher group delay baseline.
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Fig. 1. Linear phase LWDF structure

II. LINEAR PHASE DESIGN METHOD

The design method featured in this paper relies on the
work of Brachtendorf [1], which shows the exemplary design
process for lowpass filters purely in the digital domain. In
the course of the implementation however it was extended
to be able to design any kind of filter characteristic through
frequency transformations as described in [7]. The linear phase
design method can be applied using two different approaches
from applied linear algebra.

A. Galerkin approach

We again consider the rational transfer function of an
infinite impulse response filter

H(z) =

∑N
m=0 bm z

−m∑N
n=0 an z

−n
(5)

of degree N with allpass characteristic, i.e. bN−n = an holds
for the coefficients of the transfer function H with |H| = 1.
Let b be the vector of unknown filter coefficients of dimension
N+1. Since we assume stability, we can replace in (5) z = ejΩ

obtaining the DTFT of the impulse response h.
The allpass filter shall fulfill a prescribed phase character-

istic
ϕ(Ω) = −ϕ(−Ω)

such that
H
(
ejΩ
)
≈ ejϕ(Ω)

with H periodic with period 2π. A re-calculation leads to the
equation

G
(
ejΩ
)

:=

N∑
n=0

bn e
−j nΩ − ejϕ(Ω)

N∑
n=0

bN−n e
−j nΩ ≈ 0

We define the inner product

< f, g >:=
1

2π

∫ π

−π
f g∗ dΩ

with induced norm ‖f‖2 =
√
< f, f >, where the asterisk

represents complex conjugation.
The Galerkin method calculates the coefficients by requiring

that the inner product vanishes for a suitable set of test
functions ϕl

(
ejΩ
)
, l = 0, . . . , N , i.e.

< G, ϕl >= 0, l = 0, . . . , N

Moreover, the test functions must span an N dimensional
subspace. For numerical accuracy, it is common practice to
employ orthogonal basis functions ϕl = e−j lΩ, i.e.
< ϕl, ϕm >= δlm, where δlm is the Kronecker symbol. The
choice of the basis functions corresponds to a Fourier series
approximation.

Calculating < G, ϕl >, one can see from the first summa-
tion that

<

N∑
n=0

bn e
−j nΩ, ϕl >= bl

due to the orthogonality property. For the second summation
we obtain

< ejϕ(Ω)
N∑
n=0

bN−n e
−j nΩ, ϕl >=

1

2π

∫ π

−π
ejϕ(Ω)

N∑
n=0

bN−n e
−j (n−l) Ω dΩ

Introducing the short hand ψnl(Ω) = ϕ(Ω) − (n − l) Ω with
property ψnl(−Ω) = −ψnl(Ω), one can rewrite the integral
above using trigonometric identities to

1

π

∫ π

0

N∑
n=0

bN−n cosψnl(Ω) dΩ := gl(b), l = 0, . . . , N

Defining the vector g(b) = [g0, . . . , gN ]T , one obtains the
linear homogeneous equation

b− g(b) = 0 (6)

i.e., the solution lies in the kernel of (6). The kernel of the
homogeneous equation can be calculated, e.g., by the SVD or
QR algorithm.

B. Collocation method

We define the inner product with weight function w

< f, g >w:=
1

2π

∫ π

−π
w f g∗ dΩ

where w(Ω) > 0 (up to some countable numbers in the interval
[−π, π[). As test functions we employ Dirac delta distributions



ϕl = δ(Ω−Ωl), l = 0, . . . , L ≥ N, Ωl ∈ [−π, π[. Employing
the sift property of the delta distributions one obtains

<G, ϕl >w = w(Ωl)

N∑
n=0

bn e
−j nΩl

− w(Ωl) e
jϕ(Ωl)

N∑
n=0

bN−n e
−j nΩl

Collecting all equations in a system of linear homogeneous
equations, we get

[< G, ϕ0 >w, . . . , < G, ϕL >w]
T

= 0

For L > N is the system of equations over determined. One
obtains the solution with least Euclidean norm employing
either the SVD or the QR algorithm. Choosing a suitable
weighting function w enforces the accuracy of the approxi-
mation at specific frequencies.

III. LWDF TOOLBOX

The toolbox named Wave Digital Filter Designer – in which
the practical part of this work is implemented – came to
existence at Delft University of Technology [2]. In contrast
to many existing filter design tools it focuses solely on the
design of Wave Digital Filters and Lattice Wave Digital Filters
hence providing an excellent basis for this work. As a plugin
for Matlab it is able to take advantage of Matlab’s numerical
computing capabilities and the provided GUI design tool.
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Fig. 2. Original design flow (solid) and integrated changes (dashed)

Figure 2 shows the general design flow after an initial review
of the existing toolbox as well as the implemented changes
to integrate the new design method. The toolbox allows the
user to design filters of the four characteristic magnitude be-
haviours: lowpass, highpass, bandpass and bandstop. For each
characteristic behaviour a number of approximation methods
including Butterworth, Chebyshev, Cauer and Sharpe/Vlach
can be selected. The toolbox provides the possibility to de-
sign the filters in both the continuous-time and discrete-time
domains. The transformation of the two domains is done using
the bilinear transformation. The results of the design process
include the general transfer functions in continuous-time and
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Fig. 3. Comparison of magnitude responses for the reference and linear phase
design with the same implementation effort (multiplier count M = 11)

discrete-time domains as well as the actual wave digital filter
parameters for two and three port adaptors. For purely analog
applications a ladder network containing resistors, capacitors
and inductances can also be created.

IV. RESULTS

As a result of this work the linear phase approximation
method was integrated into the filter design toolbox from [2]
and made available for public use. The comparison of ap-
proximation methods shown in Figures 3 and 4 underlines the
capabilities of the linear phase design method. As a reference
for the comparison the Butterworth approximation was chosen.
Since the filter order has a slightly different meaning in both
approximation methods, the implementation effort (i.e. number
of multipliers) of the compared filter designs is chosen to be
equivalent. The defined implementation effort of M = 11
multipliers translates to an 11th order transfer function for
the reference filter and a 21st order transfer function for the
linear phase design. According to this relation between transfer
function and filter order it can be said that the linear phase
design requires only about half the multipliers of the reference
design at the same order of the transfer function. The linear
phase design in this example was created using the Collocation
method.

As can be seen in Figure 3 the new design method features
an excellent stopband behaviour with a steeper roll-off than the
reference filter. With more than 70 dB stopband attenuation the
linear phase design is slightly inferior to the reference design
but still at a high level. The group delay plot in Figure 4
however shows the significant advantages. The group delay in
the majority of the passband is approximately linear while the
reference group delay gradually increases.

Adjusting the weighting function of the Collocation method,
the behaviour and the emphasis of the phase correlation can
be further adjusted to suit special needs. The currently used
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Fig. 4. Comparison of group delay variation for the reference and linear
phase design with the same implementation effort (multiplier count M = 11)
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Fig. 5. Weighting function for Collocation approximation method

weighting function for the example design can be seen in
Figure 5. Through spacing and magnitude of the sample points
of the weighting function the optimization behaviour of the
Collocation method can be adjusted.

V. CONCLUSION

In this document the effectiveness of the newly developed
approximation method for designing Lattice Wave Digital
Filters with very low group delay variations has been shown.
The design procedure was made available in a filter design
toolbox, using the standard LWDF topology with two parallel
allpass filters in a cascaded form. It has been shown that
the linear phase design requires significantly less realization
effort compared to the reference design using the Butterworth
approximation method while outperforming it with the exemp-

tion of the stopband attenuation. The effects of quantization of
the coefficients of the transfer function can now be evaluated
directly within the design procedure.
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