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1 General

The Wave Digital Filter Designer (WDF Designer) is an extension to Matlab that was
originally developed by Delft University of Technology [1]. In the course of a bachelor’s
thesis, a newly developed method to design Wave Digital Filters with an approximately
linear phase response was added to this filter design toolbox. Therefore some changes
were made to the existing toolbox to suit the new design method as well as the imple-
mentation of the design method itself.

The Lattice Wave Digital Filter (LWDF) is an implementation variant of the infinite
impulse response filter. This type generally causes a lower implementation effort for a
given specification than a finite impulse response filter. The LWDF is a particularly
favourable variation due to its minimized number of multipliers and insensitivity to the
effects of parameter quantization. However infinite impulse response filters induce a non-
constant group delay to the processed signal. This means that there is a variation of the
signal processing delay for different frequencies, which leads to dispersion. Dispersion is
a critical phenomenon if the designated application relies on the shape of the signal en-
velope. In audio applications sufficiently large group delay variations can lead to audible
signal distortion as well as to effects of inter symbol interference in digital modulation
applications. This adverse effect is inherent to this implementation variant and cannot
be eliminated completely. The Lattice Wave Digital Filter, which generates the required
filter characteristic through a series of all-pass filters however can be designed in a way
to minimize the group delay variation. Applying a novel design method, yields LWDFs
with approximately constant group delay.

This document explains the updated user interface as a guideline for new users and
presents some example designs for the linear phase design method. Since this document
will only discuss the extension to the toolbox, it is highly recommended to also read the
original documentation that can be found elsewhere [1].

2 Toolbox Overview

Figure 1 shows the general design of the LWDF toolbox as well as the implemented
changes to integrate the new design method. The toolbox allows the user to design
filters of the four characteristic magnitude behaviours: low-pass, high-pass, band-pass
and band-stop. For each characteristic behaviour a number of approximation methods
including Butterworth, Chebyshev, Cauer and Sharpe/Vlach can be selected. Depending
on the approximation method different parameters like cut-off frequency, bandwidth,
passband and stopband ripples and the zero locations of the filter transfer function
have to be provided to further specify the filter behaviour. Unlike other toolboxes
the design specifications have to be input in relative frequency values, which makes it
easier to compare different filter designs and reuse existing filters for different application
scenarios. The filter parameters can be translated into concrete values at the end of the
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Figure 1: Current design flow (solid) and implemented changes (dashed)

design process though. The toolbox provides the possibility to design the filters in both
the continuous-time and discrete-time domains. The transformation of the two domains
is done using the bilinear transformation. The results of the design process include
the general transfer functions in continuous-time and discrete-time domains as well as
the actual Wave Digital Filter parameters for two and three port adaptors. For purely
analogue applications a ladder network containing resistors, capacitors and inductances
can also be created.

3 Software Architecture

The toolbox is implemented as a plug-in for Matlab, using the built in GUI framework.
Therefore the software consists of two parts: a layout description and a complementing
script file including all user interface related functionality and callback methods as well as
a set of calculation methods with which the actual approximation methods are performed
and results are calculated. In this Section the most commonly used data structures are
explained in detail.

3.1 Data Structures

3.1.1 Transfer Function Data Structure

The interfaces for the different filter approximation functions vary in number and types
of specification parameters due to their different methodical approaches. The return
values of the approximation functions however share the same format, a data structure
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(Hs) representing the transfer function of the filter in the continuous-time domain H(s).
The following code examples show the resulting structures of a normalized 5th order
Butterworth low-pass filter at the cut-off frequency ωco = 1.

Hs =

struct with fields

poly_fs: 1

poly_gs: [1 3.2361 5.2361 5.2361 3.2361 1.0000]

ident: 'LP PROTOTYPE: 'butter',5,1'

roots_fs: []

roots_gs: [5x1 double]

The individual fields of the structure representing the transfer function are as follows:

� poly fs: coefficients of the numerator polynomial [bn bn−1 ... b0]

� poly gs: coefficients of the denominator polynomial [am am−1 ... a1 1]

� ident: textual representation of the filter characteristics

� roots fs: roots of the numerator polynomial

� roots gs: roots of the denominator polynomial

This data structure is the outcome of every approximation algorithm and serves as the
main exchange format between the approximation step and the subsequent Wave Digital
Filter calculation algorithms. Another data structure (Hz) exists for representing the
transfer function in discrete time domain H(z), but it is rather used as a final result of
the design process than as an exchange format.

3.1.2 LWDF Parameter Structure

A result of the whole design process is another data structure (LWDF) which contains the
filter parameters for the Lattice Wave Digital Filter type as well as additional information
for plotting the lattice structure. These parameters can be directly used as coefficients
of the LWDF adaptor structures in hardware implementation.

LWDF =

struct with fields:

wdaCodes: [2x2 char]

gamma: [2x2x2 double]

The fields of the structure contain data as follows:

� wdaCodes: encoded types of LWDF structure elements for top and bottom all pass
branches

5



� gamma: γ-coefficients of each two-port adaptor in the top and bottom LWDF
branches

The γ-coefficients are output in a 3-dimensional matrix with 2×N × 2 fields where the
1st dimension represents the maximum number of adaptors per all-pass section which is
always 2, N represents the maximum number of all-pass sections in the top and bottom
branches and the 3rd dimension represents the two branches of the LWDF structure
and is always 2 as well. Not used coefficients are marked as NaN . Concerning above
mentioned example, the corresponding gamma matrix looks as follows:

γtop =

[
0.00 −0.5279
NaN 0.00

]
, γbottom =

[
−0.1056 NaN

0.00 NaN

]
. (1)

3.2 Functions

The existing functions of the toolbox were changed as little as possible. Even though a
lot of functionality of the original toolbox is already built into the newer versions of the
Matlab framework – especially the standard filter design and transformation functions
– the original ones were kept due to compatibility reasons.

3.2.1 LWDF Coefficient Calculation

The central functionality to obtain a Lattice Wave Digital Filter is implemented in the
Hs2LWDF function. As a parameter it requires the data structure Hs containing the general
filter transfer function and converts it to the LWDF parameter structure mentioned
before. Therefore the roots of the denominator polynomial are used to calculate the
coefficients for the two all-pass branches. This method aims to assign neighbouring
roots of the polynomial to different branches of the LWDF and calculating the filter
coefficients directly from the continuous time transfer function.

Due to the design process of the linear phase method, the structure of the linear phase
filters does not comply with this approach because it designs dedicated all-pass filters for
the upper and lower all-pass branches of the filter directly in the discrete-time domain.
When combined with the above mentioned method this would lead to a much bigger
resulting filter in terms of coefficients and thus multipliers. Hence the functionality has
to be extended to support the conversion of transfer functions originating from the linear
phase method.

3.2.2 LWDF Structural Plot

Another key functionality – for plotting the resulting LWDF structure – resides in the
ShowLWDF function. It is used to visualize the generated lattice structure of two-port
adaptors and delays. Among other parameters, this function requires the calculated
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LWDF structure and draws the structure in a Matlab plot window. The function is by
design not able to display the special structure of the linear phase filters and therefore
requires some adaptions as well.

3.2.3 Frequency Response Plot

To visualize the characteristic of the designed filter the toolbox offers a function (PlotHz)
to plot the magnitude response of a given discrete time transfer function. While initially
only the magnitude response was of relevance, with the implementation of the linear
phase method the phase response and the group delay are relevant results of the design
process as well.

4 User Interface

The new interface (see Figure 2) shows all available controls at all times, where controls
are disabled if they are not needed with the current settings though. The redesigned
layout now also works for different operating systems. To simplify the handling, not all
optional parameters of the linear phase design functions are made available in the user
interface.

Figure 2: Toolbox user interface.
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4.1 Filter Type

Selection of the four common filter characteristics. The plot area to the right of this box
shows the selected filter characteristic along with a description of the key parameters to
specify the filter.

4.2 Approximation

The supported filter approximation methods now include the Linear Phase option. The
approximation method implicitly defines characteristic properties of the transfer func-
tion, such as the existence of passband ripples, the minimal stopband attenuation or the
location of zeros in the transfer function. In the case of the linear phase design method
it ensures a very low group delay variation in the passband region up to the cut-off
frequency.

4.3 Filter Specifications

The filter specification and additional parameter sections contains all possible configu-
ration options for the filter design. Depending on the selection of the first two options,
the required filter parameters are enabled. Using the linear phase method, only requires
some basic parameters like the filter order and the cut-off frequency, as well as a band-
width for band-pass and band-stop filters. Designing low-pass or high-pass filters, an
odd filter order is required, while at band-pass and band-stop designs, an even filter
order is mandatory.

It is possible to specify all design methods either in continuous time (s-domain) or
discrete time (z-domain). However, for the linear phase method, the z-domain is recom-
mended due to the fact that the design process is performed in the z-domain. It has to
be noted that the linear phase approximation method, unlike others, does not specify a
fixed 3 dB corner frequency but rather a transition band, the actual 3 dB frequency can
be anywhere within this region.

4.4 Quantisation

A new feature of this toolbox is the assessment of the effects of parameter quantisation.
In practical applications the precision of the filter coefficients is limited due to the im-
plementation efforts and costs, therefore it is necessary to know whether or not the filter
performance meets the specifications under real life conditions. This option provides
the possibility to evaluate the frequency response for a given quantisation bit width
and a number of quantisation methods. For this option to be enabled, the Consider
Quantisation checkbox in the Output Control section needs to be activated.
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4.5 Output Control

In the Output Control section, different output plots and data structures can be enabled.
From plots of the magnitude response for both continuous and discrete time domains up
to structural graphics and coefficient values of the LWDF filter implementation, a large
number of documentary or implementation details can be generated.
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5 Toolbox Functionality

To incorporate the new design process into the toolbox, changes were made to sev-
eral functionalities, especially for handling the intermediate data structures holding the
transfer function. Additionally, adaptions of the structural plots of the LWDFs and
transfer function plots were introduced. The most apparent changes were made to the
user interface, incorporating the new functionality and reorganizing the controls to get
a more intuitive look and feel.

5.1 Linear Phase Approximation Functions

The actual implementation of the linear phase design method was done in separate Mat-
lab functions to be usable also without the toolbox. They incorporate the whole set of
mandatory and optional parameters to fine-tune the approximation method. This set of
functions contains the two approximation methods, Galerkin approach and Collocation
method as well as the actual design functions for retrieving filters of lowpass and band-
pass characteristic. Other characteristics were not implemented due to the fact that the
inverse characteristic can be achieved by subtracting the two branches from each other
instead of adding them, which is a well-known advantage of LWDFs.

The functions to access the linear phase design method require only the filter order and
the transition bandwidth for the lowpass, and the bandwidth and transition bandwidths
for the bandpass filter. The implementation of the bandpass design function makes
use of the frequency transformations. There are optional parameters to control the
approximation method as well as further optimisation algorithms. The functions return
the transfer functions in both continuous-time and discrete-time domain and can be
accessed as follows:

[Hs, Hz] = Hs_linear(filterOrder, fp_rel, transBw_rel, varargin)

[Hs, Hz] = Hs_linearBP(filterOrder, bw_rel, transBw_rel, varargin)

The first three parameters of these functions are mandatory. The additional optional
parameters have no fixed order and have to be entered as key-value pair. The frequencies
and bandwidths are normalized with respect to the sampling frequency and have to be
inside the interval [0, 0.5[.

� filterOrder: filter order of the linear phase filter; This parameter actually repre-
sents the number of multipliers needed, which does not necessarily coincide with
the order of the transfer function.

� fp rel: normalized passband frequency of lowpass filter

� bw rel: normalized passband bandwidth for symmetrical bandpass filter with re-
spect to frequency f = fs

4
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� transBw rel: normalized transition bandwidth

� varargin: optional argument specifier, arguments can be one or more of the fol-
lowing key-value pairs

– ’DesignMethod’ : (’galerkin’ | ’collocation’)

underlying approximation method (default ’collocation’)

– ’OrderReduction’ : (0 | 1)

attempt to reduce the filter order (default 0)

– ’IterativeOptimisation’ : (0 | 1)

perform an iterative optimization (default 0)

Through the filter transformation functions in theory every other kind of filter charac-
teristic is realizable. Due to the efficient implementation structure of the linear phase
design, arbitrary transformations – especially for bandpass and bandstop characteristics
– are not possible, because they would lead to transfer functions with which this partic-
ular structure is not realizable anymore. Arbitrary transformations would lead to linear
phase designs with a significantly higher implementation effort. It is possible though to
design a bandpass characteristic which is symmetric with respect to frequency f = fs

4 .
Therefore this design function only needs two specification parameters.

5.2 LWDF Creation Functions

As shown in Figure 1, the data exchange format of the toolbox equals the continuous-
time domain transfer function. Hence retrieving the LWDF structure and coefficients
require some additional transformation functions. Since the linear phase design function
yields the transfer function in the discrete-time domain, the subsequent LWDF transfor-
mation functions were upgraded so that they are able to calculate the LWDF coefficients.
Similarly, the function for plotting the LWDF adaptor structure was upgraded to be able
to plot structures of linear phase filters. Usually the adaptors and delay elements are
evenly distributed among the upper and lower branches. In a linear phase design, the
adaptors are all located in the upper branch, leaving only delay elements in the lower
branch.

5.3 Coefficient Quantisation

To be able to analyse the quantisation effects on the magnitude and phase response, a
possibility to quantise the γ-coefficients of the LWDF was implemented as well. This
feature can be accessed through the user interface of the toolbox and requires the bit-
width and the quantisation method as parameters. The quantisation method can either
be a simple rounding to the nearest discrete value (round), always rounding up (ceil)
or down (floor) or rounding towards zero (trunc). When selected, the quantisation
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functionality yields a separate data structure containing the quantised filter coefficients
as well as plots comparing the ideal and quantised frequency responses.

12



6 Example Filter Designs

This section shows some example results of the implementation of the linear phase de-
sign method. As there are numerous design specification variations, not all of these are
addressed and compared in detail to reference implementations. For comparison of the
magnitude and phase responses a Butterworth LWDF implementation is chosen. Ad-
dressing the mismatch between filter order and order of the transfer function between a
linear phase and a Butterworth implementation, the Butterworth reference implemen-
tation shall have the same number of multipliers, which better reflects the practical
advantages of the linear phase design method.

6.1 Lowpass Design

The first example design, depicted in Figure 3, shows a 7th order lowpass filter. Both
filters are designed using the same passband frequency f

fs
= 0.25. The linear phase

design parameters also include a transition bandwidth of Bt
fs

= 0.05 and the Collocation
approximation method.

Regarding the magnitude response, the linear phase design initially exhibits a steeper
transition to the stopband, but a lower maximum attenuation than the reference design.
Depending on the implementation bit-width and the quantisation noise floor, this might
have to be considered for the desired application. The group delay variation on shows
the strengths of this approximation method, and is approximately constant for the pass
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Figure 3: Frequency responses for lowpass designs of Butterworth reference and linear

phase design of 7th order
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Figure 4: LWDF topology for lowpass filter, using the linear phase design.

band at τg ≈ 6.

The group delay baseline is noticeably higher than the minimal group delay of the
reference filter, which is characteristic to this design method. The group delay variation
is very low in the passband and considerably lower than the reference design near the
transition band. Hence there is a trade off between passband attenuation and group
delay variation, which has to be considered.

The LWDF topology for the example lowpass filter, suing the linear phase design can
be seen in Figure 4. The LWDF topology can be characterised by the two branches of
allpass filters, with sequences of adaptors and delay elements, which are combined at
the end by either subtraction or addition. Considering the linear phase design, the lower
branch consists only of delay elements, which leads to an ideal constant group delay. The
upper branch contains the actual allpass filter cascade, which creates the desired phase
response. In this case it consists of 7 adaptors, resulting in a 7th order filter. Each of
these adaptors has a single coefficient and requires exactly one multiplier. Even though
this is a lowpass design, it can be seen that the inverse highpass characteristic can be
easily derived from this topology by subtracting the upper branch from the lower one.

Figure 5 shows the weighting function for the evaluated collocation points. Every sam-
pling point represents one frequency at which the desired phase response is optimised.
The magnitudes of the sampling points indicate how severely the desired phase response
is enforced at this frequency. The filter coefficients, which resemble the desired phase
response as best as possible, are obtained using an optimisation algorithm with least
Euclidean norm.

Another option to enforce the weight in a specific frequency region is to choose a different
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Figure 5: Weighting function for the example linear phase design of a 7th order lowpass
filter

spacing for the sampling points. In Figure 5 it can be seen, that the phase response in
the transition band is not enforced at all. The stopband on the other hand is enforced
strongly by using a dense spacing and high magnitudes. Another sampling point with a
high weight is at DC frequency f = 0.

6.2 Bandpass Design

For the bandpass example a 10th order linear phase and Butterworth filters were chosen.
The bandwidth for both filters was set at B

fs
= 0.2, the remaining parameters for the

linear phase design are the same as in the lowpass example.

The magnitude response of Figure 6 shows similar relations between the reference and
linear phase design. In the passband region and near the cut-off frequencies the mag-
nitude responses are nearly the same. The reference design however exhibits a higher
total stopband attenuation.

The group delay plot again shows a significantly reduced group delay variation over the
whole frequency range. From the lower to the upper corner frequency the group delay
variation is almost constant at τg ≈ 16.
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Figure 6: Frequency responses for bandpass designs of Butterworth reference and linear

phase design of 10th order

6.3 Quantisation Examples

To analyse the quantisation effects, a 7th order lowpass filter with a passband frequency
( ffs = 0.25) and a transition bandwidth (Bt

fs
= 0.05) was designed. For this design

the Galerkin approximation method was used. The quantisation effects are shown for
quantised coefficients at two different bit-widths and compared to the ideal coefficients in
Figure 7. The quantisation methods were chosen to be round and ceil for word-lengths
of 6 and 10 bit respectively.

The quantisation effects are clearly visible in the magnitude response of Figure 7, es-
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Figure 7: Frequency responses for linear phase lowpass designs of 7th order, with different
quantisation bit-widths.
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pecially with small bit-widths. Choosing a slightly greater bit-width and varying the
quantisation mode lead to a very good resemblance of the ideal magnitude response,
as can be seen with the 10 bit quantisation. The effects on the group delay however
are almost not noticeable. Expectedly, the 10 bit quantisation exhibits no difference at
all. The 6 bit variation shows small deviations from the ideal group response, but the
differences – especially in the transition band – are even beneficial.

Compared to the design in Figure 3, the Galerkin method achieves a noticeably higher
stopband attenuation, however this is achieved at the cost of a higher group delay vari-
ation.
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